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A theoretical treatment of solvation and interaction of two arbitrary charge distributions imbedded in a dielectric 
continuum solvent is presented. The  electrostatic component of the total free energy of such a charge assembly 
contains contributions from the solvation energies of each charge distribution, and modified Coulomb interaction 
energies between the two charge distributions. The theory developed is illustrated for special cases along with 
an application to  the interaction between two ions in a continuum solvent. 

Introduction 
The dielectric continuum treatment of solvent in theoretical 

descriptions of equilibrium properties of aqueous solutions of 
simple ions, molecules, and biomolecules has received renewed 
attention in recent years due to its conceptual simplicity and 
computational expediency. Both analytical and numerical 
techniques have been exploited to obtain free energies of hydration 
of solutes, starting from Laplaceor Poisson-Boltzmann equations. 
The stage is now set to tackle problems of binding equilibria with 
a continuum treatment of solvent. In this article, we present a 
theoretical treatment of solvation, interaction, and binding of 
two arbitrary charge distributions imbedded in a dielectric 
continuum solvent. We have derived expressions for the free 
energy of interaction between two solutes as mediated by solvent. 
This amounts to obtaining the electrostatic contribution to the 
potential of mean force between the solutes, which is not only of 
interest per se, but also can be used in molecular simulations to 
incorporate solvent effects. The theory developed is discussed 
with an application to the interaction between two ions in a 
continuum solvent. 

Background 
Attempts seeking analytical solutions to the hydration free 

energies of arbitrary charge distributions have a long history. 
Born’s model for ion s~lvat ionl-~ and Onsager’s reaction field 
approach4 to dipolar solvation found a generalization in Kirk- 
wood’s formulation5.6 of the Helmholtz free energy of an arbitrary 
charge distribution imbedded in a dielectric continuum solvent 
containing added salt. Beveridge and Schnuelle7 reported a 
concentric dielectric continuum model which can in principle 
incorporate several layers of solvent with varying dielectric 
constants to account for saturation effects in calculating solvation 
free energies of arbitrary charge distributions with an overall 
spherical symmetry. This theory was subsequently extended to 
other geometries.8~9 Jayaram and Beveridge included ionic 
strength effects in the concentricdielectric modelloas an extension 
to Tanford-Kirkwood theory” and compared the dielectric 
continuum model results on solvation with those based on 
molecular simulations.I2 Solvation and salt effects in the stability 
of globular proteins, for instance, fall within the purview of such 
theories.6 The SATK (static accessibility Tanford-Kirkwood) 
model,13 which uses a simpler treatment of solvent than that of 
Beveridge and co-workers but an additional depth parameter, 
has been extensively applied to study protein titration curves, 
merits and limitations of which are discussed in several places.I3-14 
States and Karplusls developed an electrostaticcontinuum solvent 
model to treat hydrogen-exchange behavior in proteins.16 Gilson 
et al.I7 categorized the different contributions to electrostatic 
free energies of macromolecules under two sets. The first set 
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includes all pairwise interactions, viz. coulombic, boundary 
polarization effect and a pairwise Debye-Huckel term. The 
second set includes all self-energies. Gilson and Honigl8 
subsequently presented a numerical method to calculate the total 
electrostatic energy of a macromolecular system. Solvation free 
energies of DNA-like molecules with an overall cylindrical 
symmetry in the continuum framework have also been reported.19 
Bashford20 has recently summarized the existing theoretical tools 
to treat electrostatic effects in biological molecules. Molecular 
simulations on solvation free energies have provided new insights 
into the success of continuum m o d e l ~ . ~ l - ~ ~  The above theories 
deal with solvent and/or salt effects on an ion, molecule, or 
macromolecule. Dielectric continuum theories, in theabovevein, 
for binding and interaction have not progressed beyond Coulomb’s 
law, although numerical results based on simulations and the 
integral equation method,24 the protein dipole Langevin dipole 
(PDLD) approach,25,26 the finite boundary element method,Z7 
and finite difference and finite element Poisson-Boltzmann 
methodsl8.28-30 have been reported. Binding is the next phase in 
the theoretical approaches. 

Consider two arbitrary charge distributions infinitely apart in 
a vacuum (dielectric constant t = 1). When these two charge 
distributions are brought together to a distance R, Coulomb’s 
law gives us the interaction energy as a summation over (qiqj/ 
fi,)-type terms. Now if thesecharge distributions held at  a distance 
R are transferred to a dielectric medium (e.g. E = 80), the 
interaction energies are still calculated as (qiqjlcrij), treating each 
charge distribution as a collection of point charges in a continuum 
solvent. Suppose each of these charge distributions is imbedded 
in a low dielectric cavity in a continuum solvent. Coulomb’s law 
is not valid for estimating the interaction energies. The free 
energy of such an assembly contains contributions coming from 
the solvation of each charge distribution and its interaction with 
the other charge distribution as mediated by the solvent. To 
illustrate this further, let a cation of charge q+ and radius r+ 
represent charge distribution I and an anion of charge q- and 
radius r- represent charge distribution I1 and consider that they 
are infinitely apart in a dielectric medium. The free energy of 
such an assembly in the continuum model may be evaluated as 
a sum of the Born’s self-energy terms or the solvation free energy 
of each ion. Implicit in Born’s formulation is the idea that a 
point charge is imbedded in a low dielectric cavity which in turn 
is surrounded by a high dielectric medium. Now when these two 
ions are brought closer from infinity to a distance R, the solvation 
free energy terms are modified and there is an additional 
contribution due to the interaction between the two charges. 
Coulomb’s law obviously is not valid for estimating the interaction 
energies between the two ions because of the presence of the 
dielectric boundaries between the two ions. Also, usage of 
Coulomb’s law is inconsistent with the Born model. A theory is 
needed which accounts for both solvation and interaction as a 

0 1994 American Chemical Society 



5114 The Journal of Physical Chemistry. Vol. 98, No. 22, 1994 Jayaram 

the angle between the sides of length r and R be y and that 
between p and R be 6. Then according to the law of cosines 

p2 = (r2 + R2 - 2rR cos y)  

r2 = (p2 + R2 - 2pR cos 6) 

(6'4) 

(6B) 

B, and D,, contain the characteristics of the charge distributions 
I and 11, respectively: 

Figure 1. Definition of the parameters for the problem of solvent-mediated 
interaction of an arbitrary charge distribution enclosed in a sphere of 
radius a and dielectricconstant 61 with another charge distribution enclosed 
in a sphere of radius 6 of dielectric constant (2, both separated by a 
distance R and solvent of dielectric constant c3. 

function of distance between the two arbitrary charge distributions. 
The present paper addresses this need. 

Theory and Discussion 
The model considered in this study is depicted in Figure 1. 

Region I represents a cavity of radius r = a and a dielectric 
constant € 1  where in the solute charges q k  are located at  sites rk. 
Region I1 similarly represents a cavity of radius p = b and a 
dielectric constant €2 where in the solute charges q1 are located 
at  sites rl. Region I11 contains solvent of dielectric constant €3. 

The distance between the centers of the charge distributions of 
solutes 1 and 2 is denoted as R. The objective here is to obtain 
an analytical expression for the solvation free energies together 
with the free energy of solvent-mediated interaction between the 
two charge distributions as a function of distance between them. 

To obtain the solvent contribution to the total free energy of 
the charge assembly, one starts with the Laplace equation 

V 2 @ = 0  (1) 

where @ is the electrostatic potential and V2 is the Laplacian 
operator. The general solution for eq 1 in polar coordinates is 

where  COS 0) are associated Legendre polynomials, A,, is a 
constant, and B,,, is related to the charge distribution. 

The problem considered here involves three regions. The 
potential inside the cavity I is given as 

The potential inside cavity I1 is given as 

The potential in the region of bulk solvent, Le. region 111, is given 
as 

 COS e) eimq ( 5 )  

The terms containing (l/r"+l) and (l/pn+') originate in the 
multipolar expansion of the two charge distributions with "n" 
denoting the order of the electrical moments. It may be noted 
that r,  p, and R represent lengths of three sides of a triangle. Let 

The terms with A,, and C,, in eqs 3 and 4 are due to the reaction 
field acting on the solute charge distributions I and 11, respectively, 
originating in the polarization of the bulk dielectric continuum, 
and these are made to include Coulomb potentials as well, due 
to charge distributions I1 and I, respectively, as modified by the 
presence of dielectric discontinuities by a suitable choice of the 
(general solutions and) boundary conditions. The reaction as 
well as the modified Coulomb potential acting on the solute charge 
distribution I is identifiable with 

Similarly, the reaction as well as the modified Coulomb potential 
acting on the solute charge distribution I1 is identifiable with 

m +" 

The Helmholtz free energy of the system is then obtained as 

The above free energy expression contains solvation free energies 
of each charge distribution and the free energy of interaction 
between the two charge distributions. The reference state is the 
twochargedistributions infinitely apart in a vacuum or theabsence 
of solvent. 

Thus the problem on hand reduces to evaluating the constants 
A,, and Cnm subject to a specification of appropriate boundary 
conditions. The boundary conditions for the model considered 
here are that the potential and the dielectric displacement across 
the boundaries be continuous and the potential be finite in the 
bulk solvent region. 

(13) - 
@2(p  = b) - @ 3 ( p  = b) 

and 
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Equations 16 and 17 imply that E,, = 0 and G, = 0. Equations 
3, 5 ,  and 12 lead to 

Eliminating Fnm from eqs 29 and 30 gives 

where p a  is p evaluated at  r = a, Le. 

p: = a2 + R2 - 2aR cos y pa' = (dp/dr),=, (19)  

With these, eq 18 may be rewritten as 

where 

Equations 29 and 31 lead to 

Equations 3,  5 ,  and 14 lead to 

Eliminating Fnm from eqs 21 and 22 gives 

where 

From eqs 21 and 23, F, is obtained as 

Brim ( 1  - e ; ) ]  (25)  

Similarly, eqs 4 and 5 together with eq 13 lead to 

where rb is r evaluated a t  p = b. 

rb = (b2 + R2 - 2bR cos and rb' = (dr/dp),,b (27)  

Let 

eb = (e3/'2) (28)  

With these, eq 26 may be rewritten as 

Equations 4,  5 ,  and 15 lead to 

Dm ( l  - ' b )  ] ( 3 3 )  

Eliminating Hnm from eqs 23 and 31 and F, from eqs 25 and 
33 gives two equations for A, and Cnm in terms of B, and Dnm. 
Solving for A, and C ,  gives 

Cm=- (n + l ) [ ( 1  -'A)(. + (n + l)',) - ( 1  - ta)(n + (n + e 

Using eqs 34 and 35 along with eqs 9-1 1, the Helmholtz free 
energy of the charge assembly can be obtained as 

Some special cases: 

limit eqs 34 and 35 become 
(a) Two charge distributions infinitely apart, R - a. In this 

[ (n+ 1 ) ( 1  - ' b ) ]  Dnm 
b*"+' n + (n + 1)'b 

These compare exactly with the expressions reported previously 
for solvation free energies (see eqs 13-19 in ref 7 ) .  With the 
additional condition that n = 0, one recovers Born's expressions 
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for the individual ions. 
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= ( ( l  - cu)/2ac]ta)qkz + (R/(2t]e,(R - a)2))qkq/ + 
A,, = (?)% & C,, = (7) - € b  Dm 7 

U 

Similarly for n = 1, one obtains Onsager’s expressions for the 
solvation free energy of dipoles. 

(b) Two monopoles (ions) in a dielectric continuum solvent, 
n = 0. 

(39) 

eo = - (-)+; ab 
Porb 

AA = (1/2)[(1/el)Ao qk + (l/t2)Coq/I (40) 

(c) Coulomb’s law for two point charges imbedded in a dielectric 
continuum solvent. The infinities arising in the self-energies of 
point charges are avoided by first taking the limit of homogeneous 
dielectric continuum, i.e. by equating all the different dielectric 
constants in the system and then letting the ionic radii go to zero. 
Setting t, = t2 = t3 = t, i.e. e, = t b  = 1 in eqs 37 and 38 leads 
to 

A, = [ b 2 R / ( ( R  - u ) ~ ( R  - b)’)]Bo + [ R / ( R  - U ) ~ ] D O  

(d) Influence of a vicinal point charge on the solvation free 
energy of a charge. Recently Kang, Nemethy, and Scheraga31 
developed a theory to estimate the Helmholtz free energy of 
polarization of the hydration shell of a charge due to the presence 
of a neighboring point charge which they identified as (qkq// 
2cR). We consider here a special case of a point charge in the 
vicinity of a finite-sized ion, as this proves to be a very instructive 
example in delineating the contributions of each part of the system. 

Let € b  = 1 and then b = 0 in eqs 38 and 39 

The system in this case, it may be recalled, consists of a charge 
qk embedded in a cavity of radius a and dielectric constant € 1  

which is surrounded by solvent of dielectric constant €3. There 
exists a point charge q/ in the solvent region at  a distance R from 
qk. The hA here represents work done for transferring both q k  
and q/ from vacuum to solvent and bringing them together to a 
distance R from infinity. The first term in eq 41 represents Born’s 
self-energy for qk. There is no such self-energy term for qj since 
it is a point charge. The second and fourth terms are the 
contributions of qk and q/  to the interaction energy between these 
two charges. The fourth term is half the Coulomb energy due 
to the point charge qj. The second term would reduce to the 
remaining half of the Coulomb energy if u goes to zero. Thus, 
to interpret the fourth term qkq1/2cR as the polarization free 
energy3’ due to a point charge does not appear to be justified. 
This is just half the Coulombic (1 / r )  term in any force field 
which takes care of charge-charge interactions. Adding this under 
solvation as well will result in double counting. The second term 
may be seen as the modified Coulomb energy due to the finite 
size of the ion of charge qk. The third term then becomes the 
correction to the solvation (first term) free energy. In the limit 
of E, -+ 1 and a - 0 both first and third terms vanish. A simple 
partitioning thus suggests that the first and third (self) terms 
here and in eqs 34 and 35 deal with solvation free energies while 
the second and fourth (cross) terms refer to the interaction 
energies. 

Finally, the electrostatic contribution to the interaction energies 
between a sodium and a chloride ion are plotted in Figure 2 as 
a function of distance between them along with Coulombic 
interaction energy. Born’s self-energies of the Na+ ion and Cl- 
ions which make a constant contribution to the curve have been 
subtracted out of the total free energy calculated using eq 40. 
The radius of the cation and anion are taken to be 1.68 and 1.937 
A;3 € 1  = € 2  = 1, t3 = 80. It may be noticed that there is an 
enhancement in the attractive interactions between the two ions 
of opposite charge relative to Coulomb’s law predictions, a 
consequence of two opposing trends. Charge 1 polarizes solvent, 
and this acts back on charge 1. Self-energy is due to this reaction 
field. Desolvation leads to modifications to the reaction field 
which increases the total free energy of the system (AA becomes 
less negative). When depicted as in Figure 2, desolvation has the 
apparent effect of decreasing the net attraction between the two 
species relative to Coulomb’s law. The second source involves 
charge 2 polarizing solvent, and this refractionfield acts on charge 
1. Modified Coulomb field originates in this. This decreases the 
total free energy (AA becomes more negative). The contribution 
of this to the total free energy of the system is larger than the 
desolvation expense. The net result is an increased attraction 
between the two ions of opposite charge. 

Interesting effects ensue when the distance is less than the sum 
of the assumed radii of the two ions. In particular, the ion pair 
problem changes over to a dipole problem. The minimum seen 
in Figure 2 is reflective of this phenomenon. Such a minimum 
does not and is not expected to occur with Coulomb’s law. The 
distance at  which the minimum occurs in Figure 2 is not indicative 
of the optimal interaction distance between the two ions. Short- 
range repulsions (as may be incorporated via a l / r l *  term) are 
nonelectrostatic in nature and are beyond the purview of dielectric 
continuum theories. The present theory may, however, be 
supplemented by addition of such terms for a comparison with 
potential of mean force data obtainable from molecular simula- 
tions and for the development of a force field which includes 
solvent effects. 
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Figure 2. Electrostatic contribution to the total free energy of a system 
of two finite-sized ions of opposite charge imbedded in a dielectric 
continuum solvent, calculated using eq 40 (solid line with circles), as a 
function of distance between the two ions after Born’s solvation energies 
of individual ions have been subtracted out. Interaction energies based 
on Coulomb’s law with t = 80 are also shown (solid line). 

Conclusions 
A theoretical expression (eqs 34-37) for the total free energy 

of a charge assembly consisting of two arbitrary charge distribu- 
tions at  a finite distance imbedded in a dielectric continuum solvent 
is obtained. The free energy arises from the field acting on each 
charge distribution, and this field has two components: (a) the 
reaction field which accounts for solvation effects and (b) the 
refraction field which accounts for modifications to Coulombic 
interactions due to the presence of dielectric discontinuities in 
the solution. In general, therefraction field results in an enhanced 
interaction strength over Coulombic interactions. Like charges 
repel and unlike charges attract more strongly than in the case 
of Coulomb’s law. 
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